The Regular Distribution of Indonesian Volcanoes

Statistics is a scientific tool and we can apply it on Indonesian volcanoes. They are evenly distributed in a row, ready to be handled mathematically. On Sumatra we have the eight volcanoes of Marapi, Talang, Kerinci, Sumbing, Kaba, Dempo, Gunung Besar and Suoh, all pointed out with an arrow on the map below. Krakatau is in fact the end volcano of that row, being also the turning point from NW-SE alignment to the E-W trend of southern Indonesia.

Distribution of Indonesian volcanoes.

The distribution fits to a system of convection rolls spanning 1.5 degrees from east to west. The layer responsible for the effect leading to the said distribution is found at the depth of 265-410 km, as shown on the map. We can then ‘zoom in’ on individual volcanoes if we want to understand better the relationship between mantle currents and volcanism within that area. It is well known that subduction of the crust leads to volcanism in the area, but the distribution of volcanoes has to be explained further by referring to the convection rolls system. Note that the famous volcanoes, Merapi and Tambora, are found on the same latitude.

The black lines indicate the location of large scale division lines, found with 30° interval from east to west. Similarly, Indonesia spans 30° from east to west along equator, and the east and west coasts coincide with the edges of one large scale convection roll of lower mantle. Red lines indicate up-welling of mantle material, whereas blue lines stand for down-welling. Further information: https://en.wikipedia.org/wiki/Volcanism_of_Indonesia


The Iberian Peninsula Square

There is a reason for the square shape of the Iberian Peninsula. The northern and southern coasts were originally both cut E-W by transform faults of the Atlantic, extending from the mid-ocean ridge. Those structures clearly trend to form along the main directions of east and west, due to Earth’s rotational effect on the underlying mantle. Similarly, the west coast is aligned directly N-S, and in general the Mid-Atlantic Ridge is undisputably, as a large-scale feature, aligned N-S, although swaying back and forth. For orientation, you can watch: https://www.youtube.com/watch?v=-ye-3WGFh_Y

The result is a square shaped area, and the origin of that shape should be analysed in some detail. Here, it is explained according to the convection rolls system underneath. First, we should look at the peninsula in a clear way:

Iberian Peninsula square.

Then let us insert the relevant lines, the square itself and the convection rolls two layers pattern:

The Iberian Peninsula square inserted, along with convection rolls division lines.

We are so used to looking at maps, that the special shape somehow escapes from our attention, but drawing the square it can not be denied that it follows the E-W and N-S alignments very closely, and would be statistically unimaginable as a coincidence. This can be explained, providing an opportunity to enjoy this geological aspect of the area.

The Wikipedia article about the Iberian Peninsula: https://en.wikipedia.org/wiki/Geology_of_the_Iberian_Peninsula


Different Slope of East and West Oriented Subduction Zones

There is a clear difference between subduction zones facing east (slope 27.1°) and west (slope 65.6°), on the average. The first reason to be examined is Earth’s rotation. Slab is subducted about 660 km, close to 1/10 of Earth’s radius, and therefore it loses rotational velocity on the way. As this happens very slowly, it might be overlooked, but this is actually what happens. All this mass loses considerable amount of kinetic energy to the environment during the process. This fact constantly alters the slab dip as it descends into the mantle. It occurs linearly, having rotational speed u=1 at the surface, and u=0.9 close to the depth of 660 km. The Earth’s radius is 6,370 km, and therefore we roughly say that when fully subducted it has lost 10% of original rotational velocity.

This is shown here with the drawings below. Two rather similar triangles appear, as it is supposed that the lithosphere plates subducted westwards and easwards are affected equally by the difference of rotational speed, only with opposite signs of plus and minus. The distance gap is shown with the short line of the triangle, connecting the red line of real flow, and the black lines of imaginary trend of no rotation. Those lines are found to be accurately in between 65.6 and 27.1, or about 46°.

Different rotation velocity, of the Earth, with depth explains dip of slab in subduction zones.

The information about average dip of slab is from the article ´Polarized Plate Tectonics´ (2015), by Carlo Doglioni and Giuliano Panzax.


Western Iceland Earthquakes in January 2022

The earthquakes make people wonder – what is going on there? The location is outside the West Volcanic Zone and is by some regarded as intra-plate seismic activity.

Icelandic Met Office information. https://www.vedur.is/um-vi/frettir/jardskjalftahrina-i-borgarfirdi

This is a geothermal area, just south of the most powerful low temperature geothermal are in Iceland. Some large earthquakes occurred there in 1974 https://timarit.is/page/1453203#page/n0/mode/2up. According to the model considered here, with convection rolls found underneath, these earthquakes can be explained differently.

Map from: https://jardvis.hi.is/sites/jardvis.hi.is/files/Pdf_skjol/Jokull58_pdf/jokull58-einarsson.pdf

The location of epicenter can be compared with the West Volcanic Zone (WVZ), which closely resembles the East Volcanic Zone (EVZ) in many ways. The eastern margins of the WVZ and the EVZ are oriented in the same way, but the western margins differ.

The WVZ and the EVZ, the SISZ and the recent epicenters of recent earthquakes.

As the southern half of the WVZ is here regarded as a square, the N-S axis is vulnerable to shearing. The red lines west of the epicenter extend from the Reykjanes Ridge, and are supposed to be the up-welling division line between two convection rolls at the depth of 120 km, and another pair of convection rolls farther down, also up-welling. This causes tension, because the local convection rolls (in between red and blue lines) oppose the main drift of the North American Tectonic Plate, causing rifting. This causes earthquakes in the area, even though it is outside the WVZ as detected from the surface.


The Yellowstone Track

The Yellowstone Caldera is not alone. Many older remains of similar calderas can be found arranged in a row west of the presently active one. But there is something more about it.

The Yellowstone Caldera track.

Besides the calderas, fissure svarms and the Nevada Rift Zone are found north and south of the track. https://www.usgs.gov/observatories/yvo/news/just-how-long-has-yellowstone-hotspot-been-around?qt-news_science_products=4. These extra volcanic features are about 17 million years old, and show resemblance with the convection rolls presumed to be found underneath. The convection rolls theory can also explain the long features associated with the caldera. In Iceland, there are many volcanic systems combined of a caldera with fissures extending from it to the north and south. Another analogy is the fact that the Emeror Chain, considered to be a part of the Havaii Chain, actually formed along a north-south aligned line, with volcanic activity propagating south until it reached the latitude of the present Hawaii hotspot. Therefore, the hot spots, such as Yellowstone and Hawaii, are actually short sections of ´hot lines´, extending secretly north and south of them, underneath the tectonic plates.