Blog

Uncategorized

East–West Subduction Zone Asymmetry and the Role of Rotational Kinetic Energy

Observed Difference in Subduction Slopes

There is a clear and well-documented difference between the average dip of subduction zones that face east (about 27.1°) and those that face west (about 65.6°). This asymmetry has long intrigued geoscientists. Traditional explanations emphasize variations in the age and density of the subducting lithosphere—older seafloor is denser and therefore subducts at a steeper angle.

However, the Mantle Convection Rolls Model introduces an additional and complementary mechanism: the effect of Earth’s rotational velocity on the descending slab. Velocity of the subducting slab does not matter here, only the difference in rotational energy at different depths. We do not see how the tectonic plates move, but that does not mean we sould neglect the relevant calculations. In this case, calculating the difference is very simple.

Rotational Velocity and Kinetic Energy Loss

As the slab descends roughly 660 km—about one-tenth of Earth’s radius—it gradually loses rotational velocity, as the circle at surface is obviously longer then the lower circle. It therefore involves a significant kinetic-energy transfer to the surrounding mantle. If we set Earth’s radius as 1, the radius at 670 km depth is ≈ 0.9. At the equator, the difference in kinetic energy between these levels can be estimated as rotational energy at surface subtracted by rotationa energy at 670 km depth:

The result, 0.2, means that about 20% of the slab’s kinetic energy is dissipated while moving from the surface to the transition zone. Considering that the tangential velocity at the equator reaches about 1 ,674 km h⁻¹, a 20% reduction represents an immense energy transfer to the surrounding material. Imagine what happens to one cubic kilometer of slab after it loses 20% of its kinetic energy with the velocity of 1 ,674 km h⁻¹. Should it have no effect at all, or should it alter the dip of the descending slab? Of course the dip is affected by this transfer of energy, and it fits very well to the difference between the east and west of the Pacific Ocean.

The aggregate effect of this energy loss manifests differently on opposite sides of the Pacific. Along the eastern margins, the energy dissipation induces compressional pressure between converging plates; along the western margins, it produces a tensional or pulling effect. These opposing mechanical environments contribute to the observed difference in average slab dip: approximately 46° overall, with west-oriented subduction averaging near 65° and east-oriented near 27° (described in an essay by Doglioni & Panza, 2015).

Geometric Representation

This relationship can be illustrated geometrically. If the rotational velocity at Earth’s surface is represented as u = 1 and at 660 km depth as u = 0.9, two similar triangles can be drawn to represent eastward and westward subduction. The short side of each triangle—the horizontal gap between real flow (red) and the hypothetical no-rotation line (black)—corresponds to the observed angular difference. These geometric relations visually express how differential rotational velocity produces the characteristic east–west asymmetry of slab inclination. The simple drawing below shows the average difference.

Equatorial Symmetry and Mantle Roll Alignment

The same principle extends horizontally. The main division points of the equator coincide strikingly with the division boundaries of modelled lower-mantle convection rolls, which are spaced 30° apart. When subduction zones located exactly 180° apart on the equator are compared—most notably those of South America and Indonesia—their symmetry becomes evident. The position of these two trenches opposite each other can by no means be said to be just a coincidence.

S-America and Indonesia Convection Model

This has of course been mapped in detail for each subduction zone. In turn, those subduction zones show identical, although mirrored, deviation from true north. This symmetry can be explained by referring to the mantle convection rolls model. The fact that not only position, but also deviation from north is identical can not be said to be just a coincidence.

Integration Within the Mantle Convection Rolls Model

According to the Mantle Convection Rolls Model, the slab ultimately enters a ductile, convecting mantle where geophysical conditions are balanced. The difference in slab dip between east- and west-oriented subduction zones thus arises from the rotational-kinetic interaction between the descending plate and the mantle framework through which it moves.

Horizontally moving mantle material is similarly governed by the rotating geoid, producing predictable deviations from straight-line flow that define the roll-like geometry of convection cells. The vertical and horizontal components of this system are dynamically linked—both shaped by the same rotational gradients that influence slab inclination.The Missing Correlation Between Seafloor Age and Slab Dip

If slab dip were controlled primarily by the age of the subducting seafloor, one would expect a clear correlation between older, denser lithosphere and steeper subduction angles. However, such a relationship is not observed—particularly along the western margin of the Pacific Ocean.

For example:

  • The Mariana Trench, one of the deepest and steepest subduction zones on Earth, indeed involves an old oceanic plate (>150 million years). But if seafloor age were the decisive factor, then all regions subducting comparably old crust should exhibit similar dip angles—which they do not.
  • Along the Japan Trench, the subducting Pacific Plate is also very old (130–140 million years), yet its dip is far shallower in many segments, especially near Honshu and Hokkaido, where the slab inclination decreases dramatically toward the northeast.
  • Conversely, some younger lithosphere—such as that near Tonga or New Britain—subducts at extremely steep angles, contradicting any simple “old plate = steep dip” rule.

In other words, no systematic correlation exists between the age of the descending seafloor and the dip angle of subduction along the western Pacific. This observation directly contradicts the density-driven model, while strongly supporting a dynamic explanation based on Earth’s rotational velocity gradients.

The striking and consistent difference between eastward- and westward-dipping slabs, on the other hand, reveals a clear global pattern that matches the expected distribution of kinetic energy within the rotating mantle.

Why Has This Explanation Been Overlooked?

It may appear surprising that such an evident physical relation—between Earth’s rotation and slab dip—has not been explicitly emphasized before. The reason may lie in the timescales involved.

When a unit volume of lithosphere, say one cubic kilometer of slab, moves downward by 100 km, it inevitably tends to drift eastward relative to the overlying surface because its rotational velocity decreases with depth. The motion is fully deterministic: the deeper the material sinks, the greater its lag relative to the surrounding mantle at that depth.

Yet this motion unfolds extremely slowly—so slowly that, within the human timeframe or even during the lifespan of an oceanic plate, the effect seems negligible. Over millions of years, however, this cumulative eastward drift becomes geophysically significant.

It alters the balance between horizontal traction and vertical descent, subtly controlling slab geometry.
Because geoscientific models typically focus on instantaneous plate velocities rather than rotational energy differentials, the long-term kinematic consequences of Earth’s rotation have been largely overlooked or treated as negligible.

Thus, the explanation first formulated here appears novel not because it contradicts known physics—but because it applies fundamental physical reasoning (rotational mechanics) across a geological timescale that previous models rarely considered in full.

Conclusion

The consistent difference in dip angle between east- and west-oriented subduction zones can therefore be interpreted as a manifestation of Earth’s rotational dynamics coupled with the internal organization of mantle convection rolls. This integrated view connects global rotation, energy dissipation, and large-scale convection geometry into one coherent framework, offering an explanation that aligns observed slab asymmetry with measurable physical principles.

The geometry of subduction zones—both in terms of dip angle and global distribution—reflects the interaction between Earth’s rotation, kinetic energy dissipation, and large-scale mantle convection rolls.The absence of any correlation between seafloor age and slab dip across the western Pacific undermines the traditional density-based explanation. Instead, the consistent and global asymmetry between eastward and westward subduction aligns naturally with the physics of a rotating planet, where angular momentum and kinetic energy vary systematically with depth and latitude.What may initially appear as asymmetric behavior of tectonic plates can thus be understood as a predictable consequence of rotational mechanics acting within a viscous, convecting mantle—an effect long hidden simply because of its subtlety and timescale.

Uncategorized

The Logic of 30° Intervals Along the Equator

When we look at Earth’s surface, it’s easy to get lost in the details of coastlines, mountain ranges, rivers, and ridges. But if we step back and think about the planet’s deeper structure, something fascinating emerges: a repeating pattern along the Equator that follows 30° intervals.Why does this matter? Because these intervals may reflect the way Earth’s mantle moves beneath our feet.30°: A Hidden Rhythm of the Earth

Here’s the basic observation: the distance from a continental coastline to the nearest mid-ocean ridge along the Equator is 30° in a repetitive way. That number also shows up inside Earth, as the depth from the upper mantle down to the boundary above the outer core (the Gutenberg discontinuity) corresponds to the same span if you measure it along the Equator.

In other words, Earth seems to “prefer” structures that fit into neat 30° chunks, both at the surface and deep inside.

This suggests that mantle convection rolls, the giant slow-moving currents that circulate heat within the Earth, might be about as tall as they are wide, filling out the relevant space like building blocks.

Do These Rolls Really Exist?

We can’t measure mantle convection rolls directly, only thickness of Earth’s layers. But if the theory holds, then we should see their influence on the surface. One way to test this idea is to trace the Equator step by step and look at how major features line up.

Step by Step Along the Equator

If we follow the Equator around the globe, we can divide it into roughly 30° segments. Each of these intervals is marked by a major geologic boundary — a coastline, ridge, or rift. Here’s how it looks:

  • East Pacific Rise → West Coast of South America
    The East Pacific Rise is one of the fastest-spreading mid-ocean ridges on Earth. About 30° west lies the subduction zone of the Andes, where the ocean floor sinks beneath the continent, fueling earthquakes and volcanoes.
  • West Coast of South America → East Coast of South America
    Crossing the continent, we move from the dramatic tectonic activity of the Pacific margin to the quieter Atlantic side. This stretch includes the Amazon Basin, with its massive river system, which itself aligns closely with the 30° spacing.
  • East Coast of South America → Mid-Atlantic Ridge
    The Atlantic Ocean opens here, with the Mid-Atlantic Ridge running down its center. This ridge is part of the global rift system, where magma rises to form new ocean floor.
  • Mid-Atlantic Ridge → East Coast of Africa
    Another 30° step brings us to the African coastline, which mirrors South America’s. This pairing reflects the ancient breakup of Gondwana, a perfect example of how mantle flow leaves a lasting imprint on surface geography.
  • East Coast of Africa → Great Rift Valley
    The East African margin lies above mantle upwellings. Just 30° inland, the Great Rift Valley splits the continent, an active rift zone where the crust is being pulled apart and new oceans may someday form.
  • Great Rift Valley → Mid-Indian Ridge
    Continuing eastward, the Equator crosses the Indian Ocean, where the Mid-Indian Ridge rises. Like other spreading centers, it’s a direct expression of convection currents pushing Earth’s plates apart.
  • Mid-Indian Ridge → East Coast of Indonesia
    Here the Equator traverses a broad ocean basin before reaching Indonesia. This region sits at the collision of several tectonic plates, where subduction and volcanism dominate.
  • East Coast of Indonesia → West Coast of Indonesia
    Within just 30°, we pass across one of the most tectonically active areas in the world. Subduction zones border both sides of Indonesia, creating a chain of volcanoes and frequent earthquakes.

The Pacific Exception

One striking difference emerges in the Pacific Ocean. Unlike the Atlantic or Indian Oceans, the Pacific has no continental landmass near its center. Hawaii, located north of the Equator, lies above a lower mantle division line according to the comprehensive convection rolls model, but not on the Equator itself.

This means the Pacific spans a much wider interval: about 150° from Indonesia to South America, or 120° from Indonesia to the East Pacific Rise. At the Equator, the East Coast of Indonesia and the West Coast of South America mark the outer edges of the Ring of Fire. From those two points, subduction zones stretch in a regular arc all around the Pacific Basin.

In this sense, the Pacific doesn’t break the pattern, it expands it. The Equator provides the framework for tracing the boundaries, while the Pacific demonstrates how convection rolls and plate boundaries can extend into even larger structures.

Coincidence… or Deep Structure?

Is this just chance? Statistically, it seems unlikely that so many major boundaries would fall into such regular intervals. If we consider tectonic drift, the slow movement of continents and oceans over millions of years, the fact that we see such symmetry today is even more striking.

But once we think about the mantle’s convection rolls, the puzzle pieces start to fit. The surface divisions may simply be echoes of these massive, deep-seated currents.

Beauty in Regularity

Some of Earth’s most famous features fall right on these boundaries:

  • The Great Rift Valley in East Africa.
  • The Amazon River estuary in South America.
  • Subduction zones along the Andes Mountains.
  • The converging coasts and volcanic arcs of Indonesia.
  • And the sweeping Ring of Fire, stretching from South America to Indonesia.

Even the north-south symmetry of the Atlantic Ocean fits into the pattern. When you look at a world map with this in mind, it’s hard not to see a hidden order, a kind of natural geometry that shapes both land and sea.

Why It Matters

This isn’t just an exercise in pattern-spotting. If convection rolls in the mantle really do leave their fingerprint on the surface at 30° intervals, then studying these divisions could help us understand Earth’s inner workings more deeply.

It’s a reminder that the beauty of our planet isn’t only in mountains and oceans, but also in the invisible rhythms of the deep Earth that quietly shape them.

The Equator and the pattern of 30° intervals leading to the surface.
Uncategorized

How Heat is Conveyed within the Earth

The transfer of heat from Earth’s core to its surface is one of the fundamental processes driving our planet’s dynamics. The temperature difference is immense: the inner core is estimated to be hotter than the surface of the Sun, while the overlying mantle is several thousand degrees cooler. This gradient is sustained because radioactive heat sources are distributed unevenly within Earth’s interior.

Radioactive elements such as uranium, thorium, and potassium are concentrated mainly in the crust and upper mantle. They are chemically incompatible with the iron–nickel alloy that makes up the core and therefore absent from the deep metallic layers. As a result, the core itself does not produce radiogenic heat.

Surrounding the inner core, the outer core is a liquid metal where there is quite obviously space for six different convection cells, shown in countless drawings found in geophysical literature. At the boundary between the outer core and the mantle, the Gutenberg discontinuity, heat is transferred into the lowermost mantle.

The mantle is said to be plastic, because it is balancing between solid and liquid state. On geological timescales it behaves as a very slow, viscous fluid. This allows it to circulate, with hot material rising and cooler material sinking in enormous mantle convection rolls. Such convection provides an efficient mechanism for transferring heat from the deep Earth toward the lithosphere. When this heat reaches the lithosphere, the situation changes. The lithosphere, comprising the tectonic plates, is rigid and brittle. Here, heat can no longer be transferred effectively by convection; instead, it passes upward by thermal conduction, producing the steep geothermal gradient observed in the upper crust.

At certain boundaries, such as mid-ocean ridges, rift zones, and volcanic hotspots, mantle convection currents concentrate and channel heat more directly to the surface. Where two convection rolls meet, the focused upwelling of heat and pressure can act in a way somewhat comparable to the Munroe effect known from the physics of shaped charges: energy becomes concentrated along a narrow path, enabling molten rock to rise through the crust. This focused delivery of heat and magma helps explain the occurrence of volcanism at structurally weak points in the lithosphere.


Heat Radiation and the Core’s High Temperature

An additional factor that deserves close attention is the role of thermal radiation from radioactive elements in the upper mantle and crust. While radiogenic isotopes are unevenly distributed, their heat production is substantial, and the resulting radiation does not remain confined to local surroundings. Laboratory studies have shown that the thermal conductivity of mantle materials increases strongly at high temperatures. This implies that radiative transfer of heat through the mantle becomes increasingly significant under deep-Earth conditions.

From this standpoint, it is logical to consider that heat radiation generated in the upper mantle and crust can reach all the way down to the inner core. This view challenges the traditional assumption that the mantle acts only as an insulating blanket that slows cooling of the core. Instead, the mantle may also act as a medium that allows long-range transfer of radiative energy into the deepest interior.

This has important consequences for how we interpret the origin of Earth’s core heat. Physicists such as Max Planck calculated that if Earth’s interior relied solely on primordial heat left over from accretion, that heat should have dissipated very quickly relative to Earth’s 4.5-billion-year age. By this reasoning, the amount of primordial heat still retained in the core today must be negligible. Similarly, if downward heat radiation from the mantle is sufficient to maintain the core at high temperatures, then the release of latent heat from inner core crystallization also becomes only a minor contribution.

The conventional models that invoke secular cooling and crystallization as the dominant heat sources are understandable, given the historical focus on conduction and convection. However, they do not fully account for the efficiency of radiative transfer in high-temperature mantle materials. My analysis therefore leads to the conclusion that the extraordinarily high temperature of the core can be explained almost entirely by heat radiation from radioactive elements in the upper layers of the Earth. Rather than being a passive reservoir of slowly fading primordial heat, the core is actively sustained by radiative energy generated above it.


Convection and Radiative Balance

This interpretation also reframes how we understand convection within Earth’s main layers. The mantle, outer core, and even the inner core’s boundary layers all fit the geometric conditions for Rayleigh–Bénard type convection to occur: a fluid or semi-fluid medium heated from below (or internally) and cooled from above. For such convection to remain stable over geological timescales, the rate of convective circulation must stay perfectly balanced with the intensity of heat radiation reaching the inner core.

In other words, the deep Earth operates as a finely tuned thermal engine. Radiative input from above sustains the temperature of the core, while convection in the mantle and core ensures the continuous upward transport of heat. This delicate balance drives plate tectonics, fuels volcanic activity, and maintains the dynamic processes that have shaped Earth for billions of years.

The convection rolls and some relevant features found on the surface.
Uncategorized

Convection Rolls and the Global Logic of Plate Tectonics

The surface of our planet bears the unmistakable marks of forces that operate deep within its interior. Mountains, rift valleys, volcanic arcs, and ocean basins are not random accidents of nature but the result of systematic and persistent geological processes. Among these, the concept of mantle convection, where heat from Earth’s interior drives circulating rolls of plastic mantle, offers a coherent way to understand the global distribution of geological features. When we examine the Atlantic Ocean, the Pacific Ring of Fire, and particularly Iceland’s unique geology, we can see a consistent pattern that points to convection rolls as a guiding force in shaping the planet’s surface.

The Mid-Atlantic Ridge: A Symmetrical Rift

The Mid-Atlantic Ridge is one of the most striking linear features on Earth. Stretching north to south, it runs down the center of the Atlantic Ocean like a seam on a baseball. Along this ridge, tectonic plates are moving apart, and new crust is being created as magma rises to fill the gap. What is remarkable is the symmetry of this system. The forces that shape the eastern Atlantic margins, along Europe and Africa, are mirrored in the geological structures along the western margins, facing the Americas.

This symmetry suggests that the same deep mantle processes operate beneath both sides of the Atlantic. The ridge itself acts as the surface expression of an underlying upwelling zone, hot material rising in a systematic manner from below. The spreading, volcanism, and earthquakes observed along the Mid-Atlantic Ridge are thus not isolated features but the predictable result of convection-driven divergence.

To fully comprehend the effect of convection rolls, it is important to recognize that Earth’s interior is not a single uniform system but a set of layers, each with its own convection dynamics. Convection rolls in different layers may be oriented in different directions, creating complex interactions between them. On top of this, the large-scale convection rolls of the lower mantle are often overlain by smaller rolls in the upper mantle and asthenosphere. These smaller rolls add detail and local variation to the broader global pattern. As a result, surface expressions such as mid-ocean ridges appear at once holistic, reflecting the influence of large-scale mantle circulation, and discontinuous, because smaller-scale convection rolls introduce irregularities and segmentation. This layered and multi-scale system helps explain why Earth’s geological features can seem both systematic and fragmented at the same time.

The Pacific Ring of Fire: A Continuous Arc

Moving to the Pacific, we encounter an entirely different yet equally systematic phenomenon: the Ring of Fire. This chain of volcanoes and seismic zones encircles the Pacific Ocean, from the Andes in South America, up through North America’s Cascades, across the Aleutians, and down through Japan, the Philippines, and New Zealand.

At first glance, the Ring of Fire may seem irregular, since the volcanoes and trenches occur in different geological settings. Yet when viewed through the lens of mantle convection, it becomes clear that similar forces are at work around the entire Pacific rim. Subduction zones, where one plate dives beneath another, are surface expressions of downwelling limbs of convection rolls. The arcs of volcanoes, aligned in systematic chains, form where mantle material melts and rises due to the descending slabs. Just as the Mid-Atlantic Ridge reflects upwelling, the Ring of Fire reflects downwelling and lateral flow. Both belong to the same fundamental system.

Convection Rolls as a Global Framework

The systematic appearance of these geological features, ridge in the Atlantic, arcs around the Pacific, points strongly toward convection rolls as the underlying framework. Instead of imagining Earth’s mantle as chaotic or localized in its motions, we can view it as a series of organized rolls, like giant conveyor belts. These rolls transport heat from the deep interior to the surface, and in the process, they drag along the tectonic plates. It is important to point out that the rolls working against the drift of the plates above tend to be neutral due to slip effect, and the rolls acting in the same direction accelerate or maintain the drift due to no-slip effect. This horizontal drift can only be maintained with ridges and subduction zones, which in turn fit into the pattern of the convection rolls system.

By adopting this perspective, the global distribution of active regions becomes much more comprehensible. Features that might otherwise appear disconnected, the Andes, the East Pacific Rise, the Aleutians, or the Mid-Atlantic Ridge, can be seen as parts of the same coherent system.

Iceland: A Natural Laboratory

Among all the regions where convection manifests at the surface, Iceland stands out as one of the most revealing. Straddling the Mid-Atlantic Ridge, Iceland is literally being pulled apart by the diverging North American and Eurasian plates. The island is intensely volcanic, with eruptions occurring regularly, and geothermal energy bubbling up in hot springs and geysers.

What makes Iceland particularly interesting is the systematic pattern observable in its geology. Studies reveal repeated occurrences of features at roughly 1.5° intervals from east to west. These intervals are not random. They suggest that convection rolls beneath Iceland influence where magma rises and where fissures open. Instead of a single point source or isolated plume, Iceland’s structure implies a rolling system of upwellings and downwellings, each spaced in a consistent rhythm.

This pattern is like a fingerprint of convection rolls imprinted directly onto the surface. It provides one of the clearest local examples of how mantle dynamics can create systematic geological structures.

Extrapolation to Global Geology

If such a system can be identified beneath Iceland, it is logical to extend the same reasoning to other parts of the world. Iceland is not unique in experiencing volcanism or tectonic spreading. It is simply an especially visible case because the ridge rises above sea level there. The same processes occur all along the Mid-Atlantic Ridge, hidden under the ocean. Likewise, the arcs and trenches of the Pacific reveal similar spacing and repetition when studied carefully.

By extrapolating the system of convection rolls outward, one can explain the arrangement of many other active geological areas worldwide. The Mediterranean volcanism, the East African Rift, the Philippine arcs, and even intraplate hotspots may be understood within the same framework. They all represent surface manifestations of a deeper and more systematic circulation of Earth’s mantle.

A Unified Perspective

The strength of this convection-roll model lies in its ability to unify diverse geological observations into a coherent picture. Rather than treating each volcanic chain, rift, or trench as a separate phenomenon requiring a unique explanation, we can see them as interconnected parts of a global circulation system.

In the Atlantic, this system explains the symmetry of spreading ridges. In the Pacific, it accounts for the continuous arc of subduction and volcanism. In Iceland, it reveals itself in the regular spacing of geological features. On a global scale, it provides a logical framework for understanding why geologically active regions appear where they do.

Conclusion

The Earth’s surface is a complex mosaic of geological features, but beneath that complexity lies order. The Mid-Atlantic Ridge’s north–south orientation, the continuous Ring of Fire around the Pacific, and the repeated spacing of structures in Iceland all point toward the same conclusion: convection rolls in the mantle are shaping our planet in a systematic way. By recognizing this pattern and extrapolating it globally, we gain not only a deeper understanding of Earth’s past but also a predictive framework for studying its geological future.

The study of Earth’s interior is far from complete, but each new observation strengthens the view that mantle convection is not a chaotic process but an organized system of rolls. These rolls, moving slowly over millions of years, have carved the face of the planet, lifted mountains, opened oceans, and lit volcanic arcs. From the symmetry of the Atlantic to the fiery arcs of the Pacific, and from the rhythmic geology of Iceland to the restless rifts of Africa, the logic of convection rolls offers a powerful lens through which to read the Earth’s grand design.

Geysir: The most famous geological feature of Iceland.
The wide red line represents large scale lower mantle divisions. Geysir is found just at its side,
but exactly on a division line between smaller convection rolls.

Uncategorized

Geothermal Activity in Bulgaria – some preconditions

Most geothermal activity in Bulgaria is concentrated in the southwest of the country. By comparing mantle structure with the distribution of geothermal fields, it is possible to construct a simple explanatory model.

The southwest region is influenced by two opposing forces: on one hand, the general tectonic drift of the Eurasian Plate, and on the other, the counteracting effect of a mantle convection roll beneath the area. This opposition leads to rifting, which explains the geothermal activity around Velingrad and other sites. The Struma Valley marks the western boundary of this zone and includes Sapareva Banya, the hottest hot spring in Europe. When a phenomenon is exceptional—such as being the hottest or largest—it suggests that special geological conditions must be present. In this case, the nearby subduction of the Adriatic Plate beneath the Balkan Peninsula likely alters the regional stress field, creating the unusual geothermal regime observed both along the dividing line above and across the wider area marked in red on the map.

The east–west axis of the Balkan Mountains and the geothermal utilization hub near Varna are also shown on the map. While Varna’s use of shallow heat sources can partly be explained by its dense population, its location is also significant in light of the mantle-flow analysis.

This situation can be compared to Iceland, where volcanic zones about 1.5° wide (east–west) form directly above distinct mantle convection rolls. The East Volcanic Zone in southern Iceland (SIVZ) is a rift system, pulled towards the NW by the movement of the North American Plate. At the same time, the convection roll beneath it drives mantle flow in the opposite direction, thereby causing the rifting. Similarly, west of the Struma Valley, a zone of the same width has developed, representing a rift zone of the same type as the SIVZ. The recurrence of such 1.5°-wide zones strongly suggests that their formation is governed by the dynamics of a convection-roll system.

For reference. How the volcanc zones of Iceland appear in context with the convection rolls system drawn underneath.